Developing a methodology to predict PM10 concentrations in urban areas using generalized linear models.
نویسندگان
چکیده
A methodology to predict PM10 concentrations in urban outdoor environments is developed based on the generalized linear models (GLMs). The methodology is based on the relationship developed between atmospheric concentrations of air pollutants (i.e. CO, NO2, NOx, VOCs, SO2) and meteorological variables (i.e. ambient temperature, relative humidity (RH) and wind speed) for a city (Barreiro) of Portugal. The model uses air pollution and meteorological data from the Portuguese monitoring air quality station networks. The developed GLM considers PM10 concentrations as a dependent variable, and both the gaseous pollutants and meteorological variables as explanatory independent variables. A logarithmic link function was considered with a Poisson probability distribution. Particular attention was given to cases with air temperatures both below and above 25°C. The best performance for modelled results against the measured data was achieved for the model with values of air temperature above 25°C compared with the model considering all ranges of air temperatures and with the model considering only temperature below 25°C. The model was also tested with similar data from another Portuguese city, Oporto, and results found to behave similarly. It is concluded that this model and the methodology could be adopted for other cities to predict PM10 concentrations when these data are not available by measurements from air quality monitoring stations or other acquisition means.
منابع مشابه
A Comparison on Function of Kriging and Inverse Distance Weighting Models in PM10 Zoning in Urban Area
Introduction: The present study aimed to compare the performance of two widely-used models for spatial assessment of particulate matter less than 10 microns (PM10) in ambient air of Yazd city. Finally, effective factors on concentrations of pollutants and corresponding standards were investigated. Materials and Methods: A number of 13 sampling stations were employed in different areas of Yazd ...
متن کاملUsing ANN and EPR models to predict carbon monoxide concentrations in urban area of Tabriz
Background: Forecasting of air pollutants has become a popular topic of environmental research today. For this purpose, the artificial neural network (AAN) technique is widely used as a reliable method for forecasting air pollutants in urban areas. On the other hand, the evolutionary polynomial regression (EPR) model has recently been used as a forecasting tool in some environmental issues. In ...
متن کاملThe development of a dense urban air pollution monitoring network
The importance of air pollution monitoring networks in urban areas is well known because of their miscellaneous applications. At the beginning of the 1990s, Berlin had more than 40 particulate matter monitoring stations, whereas, by 2013, there were only 12 stations. In this study, a new and free–of–charge methodology for the densifying of the PM10 monitoring network ...
متن کاملPlanning Level Regression Models for Prediction of the Number of Crashes on Urban Arterials in Bangladesh
In most of the developing countries, the metropolitan organizations do not assess the safety consequences of alternative transportation systems and one of the reasons is the lack of suitable methodology. The goal of this paper is to develop practical tools for assessing safety consequences of arterial roads in the context of long-term urban transportation plans in Dhaka city, the capital of Ban...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental technology
دوره 37 18 شماره
صفحات -
تاریخ انتشار 2016